A single immunization with HA DNA vaccine by electroporation induces early protection against H5N1 avian influenza virus challenge in mice

نویسندگان

  • Liyun Zheng
  • Fuyan Wang
  • Zhongdong Yang
  • Jianjun Chen
  • Haiyan Chang
  • Ze Chen
چکیده

BACKGROUND Developing vaccines for the prevention of human infection by H5N1 influenza viruses is an urgent task. DNA vaccines are a novel alternative to conventional vaccines and should contribute to the prophylaxis of emerging H5N1 virus. In this study, we assessed whether a single immunization with plasmid DNA expressing H5N1 hemagglutinin (HA) could provide early protection against lethal challenge in a mouse model. METHODS Mice were immunized once with HA DNA at 3, 5, 7 days before a lethal challenge. The survival rate, virus titer in the lungs and change of body weight were assayed to evaluate the protective abilities of the vaccine. To test the humoral immune response induced by HA DNA, serum samples were collected through the eye canthus of mice on various days after immunization and examined for specific antibodies by ELISA and an HI assay. Splenocytes were isolated after the immunization to determine the antigen-specific T-cell response by the ELISPOT assay. RESULTS Challenge experiments revealed that a single immunization of H5N1 virus HA DNA is effective in early protection against lethal homologous virus. Immunological analysis showed that an antigen-specific antibody and T-cell response could be elicited in mice shortly after the immunization. The protective abilities were correlated with the amount of injected DNA and the length of time after vaccination. CONCLUSION A single immunization of 100 mug H5 HA DNA vaccine combined with electroporation was able to provide early protection in mice against homologous virus infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M2SR, a novel live influenza vaccine, protects mice and ferrets against highly pathogenic avian influenza.

The emergence of highly pathogenic avian influenza H5N1 viruses has heightened global concern about the threat posed by pandemic influenza. To address the need for a highly effective universal influenza vaccine, we developed a novel M2-deficient single replication (M2SR) influenza vaccine virus and previously reported that it provided strong heterosubtypic protection against seasonal influenza ...

متن کامل

Multivalent HA DNA Vaccination Protects against Highly Pathogenic H5N1 Avian Influenza Infection in Chickens and Mice

BACKGROUND Sustained outbreaks of highly pathogenic avian influenza (HPAI) H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is thei...

متن کامل

A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses.

H5N1 influenza viruses have spread extensively among wild birds and domestic poultry. Cross-species transmission of these viruses to humans has been documented in over 380 cases, with a mortality rate of approximately 60%. There is great concern that a H5N1 virus would acquire the ability to spread efficiently between humans, thereby becoming a pandemic threat. An H5N1 influenza vaccine must, t...

متن کامل

A new generation of modified live-attenuated avian influenza viruses using a two-strategy combination as potential vaccine candidates.

In light of the recurrent outbreaks of low pathogenic avian influenza (LPAI) and highly pathogenic avian influenza (HPAI), there is a pressing need for the development of vaccines that allow rapid mass vaccination. In this study, we introduced by reverse genetics temperature-sensitive mutations in the PB1 and PB2 genes of an avian influenza virus, A/Guinea Fowl/Hong Kong/WF10/99 (H9N2) (WF10). ...

متن کامل

MVA-Based H5N1 Vaccine Affords Cross-Clade Protection in Mice against Influenza A/H5N1 Viruses at Low Doses and after Single Immunization

Human infections with highly pathogenic avian influenza viruses of the H5N1 subtype, frequently reported since 2003, result in high morbidity and mortality. It is feared that these viruses become pandemic, therefore the development of safe and effective vaccines is desirable. MVA-based H5N1 vaccines already proved to be effective when two immunizations with high doses were used. Dose-sparing st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009